MESIN PENETAS TELUR TERKONTROL MIKROKONTROLER DENGAN SEMBURAN UDARA PANAS SEBAGAI PENDUKUNG WIRAUSAHA

Skripsi

Diajukan sebagai salah satu syarat untuk menyelesaikan

pendidikan pada Jurusan Teknik Elektro

jenjang Strata-1

Fakultas Teknik Universitas Widya Dharma Klaten

Diajukan oleh:

NAMA : SUWANDI

NIM : 0942100390

Jurusan Teknik Elektro

Fakultas Teknik

Universitas Widya Dharma Klaten

2016

HALAMAN PERSETUJUAN

Skripsi ini tela	h diterima dan disetujui sebagai	salah satu syarat yang diperlukan
untuk memper	oleh gelar Sarjana Teknik	
Yang dipersia	okan dan disusun oleh:	
NAMA	: SUWANDI	
NIM	: 0942100390	
Pada jurusan T	eknik Elektro, Fakultas Teknik	Universitas Widya Dharma Klaten.
	ui untuk diajukan pada sidang uj	
pada tanggal,		
LINES CON TON TO		
Telah disetujui	untuk dipertahankan oleh:	
Pembimbing I		
1		
15		
Sugeng Santos	a, ST, M. Eng	Tanggal,
NIK: 690 999		runggut,
D 11 11 **		
Pembimbing II		
11		
1		

Harri Purnomo, ST,M.T NIK: 690 499 196

Tanggal,

HALAMAN PENGESAHAN

Skripsi ini telah dipertahankan didepan tim penguji dan diterima sebagai syarat akhir studi pada jurusan Teknik Elektro jenjang Strata-1 Fakultas Teknik Universitas Widya Dharma Klaten

Dewan Penguji Skripsi

Pada Tanggal

Ketua

Sugeng Santosu, ST, M. Eng NIK: 690 999 209 Sekretaris

Harri Purnomo, ST,M.T NIK: 690 499 196

Penguji I

Sutivo, ST, M. Eng

NIK: 690 903275

Penguji II

I Wayan Angga W.K, ST, M. Eng NIK: 690 914343

Disahkan Oleh,

Dekan Fakultas Teknik

TULTAS TOT. H. Darupratomo, MT

NIK: 690 304 279

SURAT PERNYATAAN KEASLIAN SKRIPSI

Yang bertanda tangan di bawah ini:

Nama

: SUWANDI

NIM

: 0942100390

Jurusan/Program Studi : TEKNIK ELEKTRO/ S1

Fakultas

daftar pustaka.

: TEKNIK

Dengan ini menyatakan dengan sesungguhnya bahwa skripsi judul : "MESIN PENETAS TELUR TERKONTROL MIKROKONTROLER DENGAN SEMBURAN UDARA PANAS SEBAGAI PENDUKUNG WIRAUSAHA". Adalah sebenar-benarnya karya saya sendiri dan bebas dari plagiat. Hal-hal yang bukan karya saya dalam skripsi ini telah diberi tanda sitasi dan ditunjukkan dalam

Apabila di kemudian hari terbukti pernyataan saya tidak benar, saya bersedia menerima sanksi akademik berupa pembataalan ijazah dan pencabutan gelar yang saya peroleh dari skripsi ini.

Klaten, 18 Juni 2016

Yang membuat pernyataan,

MOTTO

 \checkmark Selagi masih ada kesempatan untuk belajar, marilah kita belajar

Skripsi ini kupersembahkan kepada:

- Almarhum Bapak Tarno Diharjo dan Ibu Suratmi serta seluruh keluarga kecilku tercinta.
- 2. Seluruh sahabat,serta teman-teman Fakultas Teknik Elektro Angkatan 210.
- 3. Universitas Widya Dharma Klaten.

KATA PENGANTAR

Assalamu'alaikum Wr Wb

Segala puji dan syukur penulis panjatkan kehadirat Allah SWT karena atas rahmat dan karuniaNya kepada penulis, sehingga penulis dapat menyelesaikan penyusunan Laporan Skripsi ini yang berjudul "Mesin Penetas Telur Terkontrol Mikrokontroler Dengan Semburan Udara Panas Sebagai Pendukung Wirausaha".

Penulisan Laporan Skripsi ini disusun guna untuk melengkapi persyaratan menyelesaikan pendidikan Program Strata 1 Jurusan Teknik Elektro Fakultas Teknik Universitas Widya Dharma Klaten.

Penulis menyadari kegiatan penelitian ini tidak akan terlaksana apabila tidak didukung oleh berbagai pihak. Untuk itu dalam kesempatan ini perkenankanlah penulis untuk mengucapkan terima kasih kepada:

- Bapak Prof. Dr. H. Triyono, M.Pd, selaku Rektor Universitas Widya Dharma Klaten
- Bapak Ir. Daru Pratomo, MT, selaku Dekan Fakultas Teknik Universitas Widya Dharma Klaten
- 3. Bapak Sugeng Santosa, ST, M. Eng, Selaku Ketua Prodi Teknik Elektro Universitas Widya Dharma Klaten dan Dosen Pembimbing I (satu).
- 4. Bapak Harri Purnomo, ST,M.T, Selaku Doesn Pembimbing II (dua).
- 5. Semua dosen dan karyawan Universitas Widya Dharma Klaten yang ikut serta membantu dalam penyelesaian laporan skripsi ini.
- 6. Keluarga yang selalu memberi motivasi, doa, semangat, dukungan, dan kepercayaan yang telah diberikan selama penyusunan laporan skripsi ini.

7. Rekan-rekan Jurusan Teknik Elektro Angkatan 2010 yang selalu memberikan semangat, saran, kritik, serta dukungan dalam melakukan penyusunan laporan skripsi.

Penulis menyadari bahwa dalam penulisan laporan skripsi ini masih terdapat banyak kekurangan, maka dari itu penulis mengharapkan kritikan dan saran dari semua pihak yang membaca tulisan ini demi kesempurnaan. Semoga laporan skripsi ini bermanfaat bagi pembaca

Wassalammu'alaikum Wr Wb

Klaten,											2	0	1	6)

Penulis

DAFTAR ISI

Halaman Judul	i
Halaman Persetujuan	ii
Halaman Pengesahan	iii
Surat Pernyatan Keaslian Penelitian	iv
Motto dan Persembahan	v
Kata Pengantar	vi
Daftar Isi	viii
Daftar Gambar	ix
Daftar Tabel	X
Abstrak	xii
BAB I. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Perumusan Masalah	2
1.3 Pembatasan Masalah	2
	$\frac{2}{2}$
1.4 Tujuan Penelitian	3
1.5 Metodologi Penelitian	
1.6 Kajian Pustaka	4
1.7 Sistematika Penulisan Skripsi	6
BAB II. DASAR TEORI	8
2.1 Sistem Penetasan Telur	8
2.2 Mikrontroler Arduino Uno	
	10
2.2.1 Sumber Daya	11
2.2.2 Memori	12
2.2.3 Input dan Output	13
2.2.4 Komunikasi	14
2.3 Sensor	15
2.3.1 Sensor Kelembapan Udara DHT11	15
2.4 Elemen Panas Magic com	19
	21
BAB III. METODOLOGI PERANCANGAN	21
3.1 Bahan dan Alat	21
3.2 Perancangaan	21
3.3.1 Perancangan Hardware	21
3.2.1.1 Blog Diagram Mesin Penetas Telur	21
3.2.1.2 Mikrokontroler Arduino Uno	22
3.2.1.2.1 Papan Arduino Uno Rev 3	23
3.2.1.3 Aplikasi LCD 16X2	24
3.2.1.4 Rangkaian Driver Untuk Kontrol Blower	26
3.2.1.5 Rangkaian Driver Untuk Kontrol Heater	27
3.2.1.6 Sensor Kelembapan Udara DHT11	28
3.2.1.7 Perancangan Pembuatan Mesin Penetas Telur	29
3.2.1.7.1 Bahan Yang Digunakan	30
3.2.1.7.2 Peralatan yang Digunakan	30
3.2.2 Perancangan Software	31

3.2.2.1 Flowchart Program Mesin Penetas	31
3.2.2.2 Aplikasi Program Arduino	31
3.2.2.2.1 Bahasa Program Arduino Yang Digunakan	32
BAB IV. Pengujian Alat	36
4.1 Pengujian Board Arduino	36
4.1.1 Tujuan Pengujian	36
4.1.2 Menguji Koneksi Komputer Dan Pana Arduino	36
4.1.3 Peralatan Yang Digunakan	37
4.1.4 Langkah – Langkah Pengujian	37
4.1.5 Hasil Pengujian	40
4.2 Pengujian LCD 16X2	40
4.2.1 Tujuan Pengujian	40
4.2.2 Peralatan Yang Digunakan	40
4.2.3 Langkah – Langkah Pengujian	40
4.2.4 Hasi Pengujian	41
4.3 Pengujian Pemanas	41
4.3.1 Tujuan Pengujian	41
4.3.2 Peralatan Yang Digunakan	41
4.3.3 Langkah – Langkah Pengujian	41
4.3.4 Hasil Pengujian	42
4.4 Pengujian Sensor Suhu	42
4.4.1 Tujuan Pengujian	42
4.4.2 Peralatan Yang Digunakan	42
4.4.3 Lngkah – Langkah Pengujian	43
4.4 Hasil Pengujian	43
4.5 Pengujian Keseluruhan Alat	44
4.5.1 Melihat Keseluruhan Fungsi Alat	45
4.5.1.1 Mengamati Kondisi Temperatur Lebih Rendah Dari Set Value.	45
4.5.1.2 Mengamati Kondisi Temperatur Sama Set Value	45
4.5.1.3 Mengamati Kondisi Temperatur Lebih Tinggi Dari Set Value	46
4.5.2 Mengamati Proses Penetasan Telur Dengan Alat Ini	46
4.5.2.1 Alat Dan Bahan	46
4.5.2.2 Langkah – Langkah	46
4.5.2.3 Tabel Pengamatan	47
4.5.2.4 Foto Hasil Pengamatan	49
BAB V PENUTUP	54
5.1 Kesimpulan	54
5.2 Saran	54

DAFTAR PUSTAKA

DAFTAR TABEL

Tabel 2.1 Tabel Karakteristil	k Senso Kelembapan Udara	17
Tabel 3.1 Data Sheet Pin Da	n Fungsi LCD 16X2	25
Tabel 4.1 Pengujian	-	42

DAFTAR GAMBAR

Gambar 2.1 Sensor Kelembapan Udara DHT11	17
Gambar 2.2 Rangkaian Elemen Panas Pada Magic Com	20
Gambar 3.1 Blok Diagram Alat	22
Gambar 3.2 Arduino	23
Gambar 3.3 Modul LCD Karakter 16X2	25
Gambar 3.4 Rangkaian Driver Pada Blower	26
Gambar 3.5 Rangkaian Driver Pada Heater	27
Gambar 3.6 Sensor DHT11	29
Gambar 3.7 Desain Mesin Penetas Telur	29
Gambar 3.8 Flowchart Mesin Penetas Telur	31
Gambar 3.9 Program Arduino	32
Gambar 4.1 Tampilan Awal LCD	41
Gambar 4.2 Tampilam Perubahan Temperatur Suhu	43
Gambar 4.3 Perbandingan Termometer Dengan Suhu Ditampilkan LCD	44
Gambar 4.4 Perbandingan Temperatur Lebih Rendah Dari Set Value	45
Gambar 4.5 Kondisi Sata Temperatur Sama Dengan Set Value	45
Gambar 4.6 Kondisi Temperatur Lebih tinggi Dari Set Value	46
Gambar 4.7 Foto Awal Memasukkan Telur	49
Gambar 4.8 Foto Telur Setelah Dimasukkan Selama 10 Hari	50
Gambar 4.9 Foto Telur Dimasukkan Selama 20 Hari	51
Gambar 4.10 Foto Setelah 21 Hari Telur Menetas	52
Gambar 4.11 Foto Setelah 21 Hari Telur Menetas	53

ABSTRAK

Suwandi, NIM: 0942100390, Program Strata-1 (S1) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Widya Dharma Klaten, Skripsi **Mesin Penetas Telur Terkontrol Mikrokontroler Dengan Semburan Udara Panas Sebagai Pendukung Wirausaha.**

Pada saat ini, berbagai macam jenis teknologi sudah mulai berkembang dan diciptakan oleh manusia untuk membantu ataupun mempermudah setiap pekerjaannya. Sehingga muncul berbagai macam alat-alat yang menarik yang sangat membantu dan mempermudah kehidupan manusia. Diantaranya sensor suhu, dimana seseorang dapat menggerakkan sesuatu atau memberi informasi melalui sensor tersebut. Sensor suhu digunakan untuk mengidentifikasi suhu atau ruangan atau alat. Namun seiring berkembangnya zaman sensor suhu digunakan sebagai pemberi sinyal untuk menggerakkan atau menjalankan suatu alat.

Dalam bidang peternakan, sensor suhu dapat digunakan sebagai indikator atau pemberi sinyal pada alat penetas telur otomatis. Sehingga sensor suhu sangat berperan penting dalam proses tersebut.

Mesin penetas telur otomatis digunakan untuk memudahkan setiap pekerjaan dalam pengembanganbiakan unggas-unggas seperti ayam, bebek, dan yang lainnya. Dengan memanfaatkan fungsi sensor suhu dan dengan penggunaan mikrokontroler sebagai pengatur suhu tersebut, maka para peternak dapat menjalankan fungsi dari mesin penetas telur otomatis. Selain itu penggunaan mikrokontroler yaitu sebagai penggerak motor untuk memutarkan telur agar suhu yang diterima telur merata. Hal demikian dapat mempermudah pekerjaan para peternak dan dapat membantu para peternak menghasilkan unggas-unggas yang berkualitas.

Kalau mengeset suhu yang konvesional dilakukan dengan diputar tanpa tahu berapa derajat *celcius* atau dengan kira-kira. Keunggulan yang dibuat suhu *set value* langsung dapat ditampilkan sesuai yang kita inginkan.

Kata Kunci: Mesin Penetas Telur, Sensor DHT11, Arduino Uno.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Pada saat ini, berbagai macam jenis teknologi sudah mulai berkembang dan diciptakan oleh manusia untuk membantu ataupun mempermudah setiap pekerjaannya. Sehingga muncul berbagai macam alat-alat yang menarik yang sangat membantu dan mempermudah kehidupan manusia. Diantaranya sensor suhu, dimana seseorang dapat menggerakkan sesuatu atau memberi informasi melalui sensor tersebut . Sensor suhu digunakan untuk mengidentifikasi suhu atau ruangan atau alat. Namun seiring berkembangnya zaman sensor suhu digunakan sebagai pemberi sinyal untuk menggerakkan atau menjalankan suatu alat.

Dalam bidang peternakan, sensor suhu dapat digunakan sebagai indikator atau pemberi sinyal pada alat penetas telur otomatis. Sehingga sensor suhu sangat berperan penting dalam proses tersebut.

Mesin penetas telur otomatis digunakan untuk memudahkan setiap pekerjaan dalam pengembanganbiakan unggas-unggas seperti ayam, bebek, dan yang lainnya. Dengan memanfaatkan fungsi sensor suhu dan dengan penggunaan mikrokontroler sebagai pengatur suhu tersebut, maka para peternak dapat menjalankan fungsi dari mesin penetas telur otomatis. Selain itu penggunaan mikrokontroler yaitu sebagai penggerak motor untuk memutarkan telur agar suhu yang diterima telur merata. Hal demikian dapat mempermudah pekerjaan para

peternak dan dapat membantu para peternak menghasilkan unggas-unggas yang berkualitas.

Kalau mengeset suhu yang konvesional dilakukan dengan diputar tanpa tahu berapa derajat *celcius* atau dengan kira-kira. Keunggulan yang dibuat suhu *set value* langsung dapat ditampilkan sesuai yang kita inginkan.

1.2 Perumusan Masalah

- 1. Bagaimana merancang perangkat keras yang rangkaian mikrokontroler *arduino uno*?
- 2. Bagaimana merancang perangkat lunak mikrokontroler *arduino uno* menjadi mesin penetas telur otomatis?
- 3. Bagaimana cara pengaturan pada penetas telur otomatis?

1.3 Pembatasan Masalah

Batasan dari penulisan laporan proyek perancangan mesin penetas telur otomatis yaitu :

- 1. Pembahasan hanya meliputi mikrokontroler arduino uno
- 2. Sensor suhu dan kelembapan udara menggunakan modul sensor DHT11
- 3. Kapasitas mesin mikrokontroler kurang lebih 50 butir telur ayam.
- 4. Mikrokontroler yang digunakan adalah board arduino uno

1.4 Tujuan Penelitian

Adapun tujuan penulisan laporan skripsi ini yaitu:

- Merancang perangkat lunak mesin penetas telur otomatis berbasis mikrontroler arduino uno
- Merancang perangkat lunak mikrokontroler arduino uno menjadi mesin penetas telur otomatis
- 3. Mengetahui prinsip kerja mesin penetas telur otomatis.

1.5 Metodologi Penelitian

a. Metode Pengumpulan data

Menurut Suharsimi Arikunto, metode penelitian diartikan sebagai cara yang digunakan oleh peneliti dalam mengumpulkan data penelitiannya. Metode yang digunakan adalah :

1.) Wawancara

Wawancara atau sering disebut juga dengan *interview* adalah sebuah dialog yang dilakukan oleh pewawancara untuk memperoleh informasi dari terwawancara.

2.) Observasi

Dalam pengertian psikologik, observasi atau yang disebut juga pengamatan adalah kegiatan pemusatan perhatian terhadap suatu objek dengan menggunakan seluruh alat indra. Termasuk dalam proses observasi ini adalah dengan cara mengukur langsung objek yang diteliti dengan menggunakan alat ukur.

3.) Dokumentasi

Metode dokumentasi adalah dengan menggunakan tulisan sebagai sumber penelitian. Misalnya buku – buku penunjang, dokumen, dan sebagainya.

4.) Metode Konsultasi

Konsultasi dilakukan guna memperoleh informasi tentang materi yang dibahas dengan dosen pembimbing skripsi ini.

5.) Metode Analisa Hasil

Data yang diperoleh dari analisis suhu mesin penetas telur otomatis berbasis *arduino uno* dapat ditampilkan dalam bentuk data hasil pengujian.

1.6 Kajian Pustaka

Penelitian tentang rancang bangun mesin tetas telur ini bukanlah baru pertama kali ini dilakukan, sudah ada penelitian terdahulu yang meneliti tentang pembuatan mesin penetas telur lainnya.

Penelitian yang dilakukan oleh Imam Nurhadi dan Eru Puspita (2010) dengan judul "Rancang Bangun Mesin Penetas Telur Ayam Otomatis Berbasis Mikrokontroler *ATmega8* menggunakan sensor *DHT11*". Sensor kelembaban dan temperatur *SHT 11* memiliki banyak kelebihan yang membuatnya menjadi pilihan yang tepat untuk aplikasi ini. Pemilihan mikrokontroler yang menjadi otak kontroler ini jatuh pada *Atmel Atmega8* yang memiliki performa dan fleksibilitas yang lebih tinggi dibandingkan *MCS-51*. Untuk pemanas inkubator digunakan 4 buah lampu dengan daya 20 *Watt*. Ruangan inkubator juga dilengkapi dengan 2 buah fan untuk sirkulasi udara.

Penelitian lain yang serupa dilakukan oleh Suprapto, Anang Tjahjono, dan Epyk Sunarno (2009) dengan judul "Rancang Bangun Mesin Penetas Telur Ayam Berbasis Mikrokontroler Dengan Fuzzy Logic Controller (Software)". **Aplikasi** pengendalian suhu sudah banyak ditemui diberbagai bidang,contohnya yaitu pada bidang peternakan. Pengendalian suhu tersebut dipakai untuk menetaskan telur ayam. Menetasakan telur ayam dalam waktu bersamaan secara alami tentu sangat sulit karena keterbatasan kemampuan induk ayam dalam mengerami telurnya. Ayam hanya mampu mengerami telurnya maksimal 10 butir. Berdasarkan masalah tersebut, maka pada tugas akhir ini kami membuat mesin penetas telur ayam berbasis mikrokontroler dengan metode fuzzy. Penggunaan mikrokontroler dengan fuzzy ini diharapkan mampu mengendalikan suhu yang diperlukan telur agar dapat menetas dengan baik yaitu sekitar 38 derajat Celcius derajat Celcius sampai 40 derajat Celcius sehingga bisa didapatkan telur ayam dalam jumlah banyak dalam waktu bersamaan. Hasil yang diperoleh yaitu 44 ayam menetas dan 7 gagal, sehingga persentase keberhasilannya 88 %.

Penelitian lain dilakukan oleh Ina Inti Rahmatika (2012) dengan judul "Uji Performansi Mesin Penetas Telur Bebek Manual dan Otomatis Dengan Pengontrol Temperatur dan Pemutar Telur Ototmatis Berbasis Mikrokontroler T89S52". Mahasiswa Jurusan Teknik Refrigerasi Dan Tata Udara Politeknik Negeri Bandung. Pada penelitian ini dilakukan uji performansi dari mesi penetas telur yang telah dibuat. Mesin penetas ini dibuat menjadi dua kabin/incubator, yaitu incubator manual dan otomatis agar dapat dilakukan

perbandingan. Perbedaan antara keduanya terletak pada pengaturan nilai temperatur dan proses pemutaran telur. Untuk *incubator* manual, *temperature* diatur dengan menggunakan *thermostat* sedangkan *incubator* otomatis diatur dengan menggunakan minkrokontroler. Dan Untuk proses pemutaran telur, pada *incubator* manual dilakukan secara manual oleh operator, sedangkan pada *incubator* otomatis proses pemutaran telur digerakkan oleh motor DC yang telah diatur sedemikian rupa.

1.7 Sistematika Penulisan Skripsi

Secara garis besar penulisan skripsi ini dibagi menjadi 3 bagian, yaitu bagian awal, isi, dan bagian akhir.

1. Bagian awal

Bagian awal skripsi meliputi judul, abstrak, lembar pengesahan, motto dan persembahan, kata pengantar, daftar isi, daftar tabel, daftar gambar dan daftar lampiran.

2. Bagian isi

Isi skripsi disajikan dalam lima bab dengan beberapa sub bab pada tiap babnya yaitu sebagai berikut:

Bab I: PENDAHULUAN

Bertujuan mengantarkan pembaca memahami dahulu gambaran mengenai latar belakang masalah, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, penegasan istilah, dan sistematika penulisan skripsi.

Bab II: DASAR TEORI

Dalam bab ini menjelaskan tentang terori-teori pendukung yang digunakan dalam pembahasan dan penyuunan laporan-laporan proyek akhir ini. Teori-teori pendukung itu antara lain tentang pembahasan mikrokontroler *arduino uno*, sensor *DHT11*, dan karakteristik dan cara kerja mikrokontroler *arduino uno* dan peralatan pendukung lainnya.

Bab III: METODE PENELITIAN DAN HASIL PENELITIAN

Pada bab ini membahas tentang pembuatan alat, serta blok dari rangkaian, skematik dari masing-masing rangkaian serta diagram alir dari program yang dibuat didalam mikrokontroler *arduino uno* tertsebut.

Bab IV: PEMBAHASAN HASIL PENELITIAN

Pada bab ini dijelaskan tentang pengujian setiap rangkaian dan hasil pengujian dari rangkaian serta program yang dibuat didalam mikrokontroler *arduino uno*.

Bab V: KESIMPULAN DAN SARAN

Berisikan kesimpulan dari hasil penelitian dan saran-saran yang relevan dengan penelitian yang telah dilaksanakan.

3. Bagian akhir

Bagian akhir skripsi berisikan daftar pustaka dan lampiran-lampiran.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan uraian di atas, maka penulis dapat mengambil kesimpulan sebagai berikut :

- Alat yang dibuat dapat digunakan untuk menetaskan telur dari percobaan yang dilakukan mencapai hasil tetas 80 %
- b) Suhu penetas rata-rata 37,04 C dengan kelembapan rata-rata 57,33 %
- c) Data hasil pengamatan didapat dengan seting set value derajat celcius

5.2 Saran

- a.) Pengembangan Alat penyemprotan air secara otomatis berguna pengembunan telur.
- b.) Dalam melakukan seleksi telur perhatikan bentuk serta warna kerabang karena bentuk dan warna kerabang sangat mempengaruhi tingkat fertilitas telur itu sendiri.
- c.) Temperature mesin tetas serta kelembabannya juga harus diperhatikan. serta aliran listriknya. Ketika listrik mati harus ada pengganti cadangan yang digunakan untuk memanaskan mesin tetas supaya suhu dan kelembaban tetap terjaga.

5.3 Analisa Usaha

Berdasarkan pengalaman penulis penetas telur menggunakan konvensional mempunyai resiko kegagalan penetasan lebih tinggi dari pada alat yang dibuat.

DAFTAR PUSTAKA

- Hardini, S. Y. P. K. 2000. Pengaruh Suhu dan Lama Penyimpanan Telur Konsumsi dan Telur Biologis terhadap Kualitas Interior Telur Ayam Kampung. Laporan Hasil Penelitian.
- Jayasamudera, Dede Juanda dan Cahyono Bambang. 2005. Pembibitan Itik. Penebar Swadaya. Jakarta.
- Nuryati, T. N., Sutarto, M. Khamin dan P. S. Hardjosworo. 1998. Sukses Menetaskan Telur. Penebar Swadaya. Jakarta.
- Rukmana Rahmat. 2003. Ayam Buras: Intensifikasi dan Kiat Pengembangan. Kainisius. Jakarta.
- Sudaryani, T. dan H. Santosa. 2000. Pembibitan Ayam Ras. Penebar Swadaya. Jakarta.
- Sudrajad. 2001. Beternak Ayam Vietnam untuk Aduan. Penebar Swadaya. Jakarta.
- Suprijatna, E., Umiyati, a., dan Ruhyat, K., 2005. Ilmu Dasar Ternak Unggas. Penebar Swadaya. Jakarta.
- Marhiyanto, B. 2000. Suksses Beternak Ayam Arab. Difa Publiser. Jakarta.
- Wardhana, L., 2006, Belajar Sendiri MikrokontrolerAVRSeri ATmega8535 Simulasi, Hardware, dan Aplikasi. Andi; Yogyakarta
- Petruzella. F., 2001, Elektronik Industri. Andi; Yogyakarta.
- Nurhadi, I., 2009, Tugas Akhir Teknik Elektro Rancang Bangun Mesin Penetas

 Telur Otomatis Berbasis Mikrokontroler ATMega8 Menggunakan Sensor

 SHT11. ITS; Surabaya.
- Budiharto, W., 2007, 12 Proyek Mikrokontroler untuk Pemula. Elex Media Komputindo; Jakarta.